miércoles, 25 de mayo de 2011

cambios climaticos

 CAMBIOS CLIMATICOS
Se llama cambio climático a la modificación del clima con respecto al historial climático a una escala global o regional. Tales cambios se producen a muy diversas escalas de tiempo y sobre todos los parámetros climáticos: temperatura, precipitaciones,nubosidad, etc. En teoría, son debidos tanto a causas naturales (crowley north 1988) como antropogenicas (oreskes,2004).
El término suele usarse de forma poco apropiada, para hacer referencia tan sólo a los cambios climáticos que suceden en el presente, utilizándolo como sinónimo de calentamiento global. 

VARIACIONES SOLARES
El sol es una estrella que presenta ciclos de actividad de once años. Ha tenido períodos en los cuales no presenta manchas solares, como el minimo de maunder que fue de 1645 a 1715 en los cuales se produjo una mini era de hielo.


Variaciones de la luminosidad solar a lo largo del ciclo de las manchas solares.
La temperatura media de la Tierra depende, en gran medida, del flujo de radiacion solar que recibe. Sin embargo, debido a que ese aporte de energia apenas varía en el tiempo, no se considera que sea una contribución importante para la variabilidad climática a corto plazo (crowley,north 1988). Esto sucede porque el Sol es una estrella de tipo g en fase de secuencia principal, resultando muy estable. El flujo de radiación es, además, el motor de los fenomenos atmosfericos ya que aporta la energía necesaria a la atmosfera para que éstos se produzcan.
CAUSAS DE LOS CAMBIOS CLIMATICOS
El clima es un promedio, a una escala de tiempo dada, del tiempo atmosferico. Los distintos tipos climáticos y su localización en la superficie terrestre obedecen a ciertos factores, siendo los principales, la latitud geografica, la altitud, la distancia al mar, la orientación del relieve terrestre con respecto a la insolacion (vertientes de solana y umbria) y a la dirección de los vientos (vertientes de sotavento y barlovento) y por último, las corrientes marinas. Estos factores y sus variaciones en el tiempo producen cambios en los principales elementos constituyentes del clima que también son cinco: temperatura atmosferica, presion atmosferica, vientos, humedad y precipitaciones.
LAS CORRIENTES OCEANICAS
Las corrientes oceánicas, o marinas, son un factor regulador del clima que actúa como moderador, suavizando las temperaturas de regiones como Europa y las costas occidentales de Canadá y Alaska. La climatología ha establecido nítidamente los límites térmicos de los distintos tipos climáticos que se han mantenido a través de todo ese tiempo. No se habla tanto de los límites pluviométricos de dicho clima porque los cultivos mediterráneos tradicionales son ayudados por el regadío y cuando se trata de cultivos de secano, se presentan en parcelas más o menos planas (cultivo en terrazas) con el fin de hacer más efectivas las lluvias propiciando la infiltración en el suelo. Además los cultivos típicos del matorral mediterráneo están adaptados a cambios meteorológicos mucho más intensos que los que se han registrado en los últimos tiempos: si no fuera así, los mapas de los distintos tipos climáticos tendrían que rehacerse: un aumento de unos 2 grados centígrados en la cuenca del mediterráneo significaría la posibilidad de aumentar la latitud de muchos cultivos unos 200 km más al norte (como sería el cultivo de la naranja ya citado). Desde luego, esta idea sería inviable desde el punto de vista económico, ya que la producción de naranja es, desde hace bastante tiempo, excedentaria, no por el aumento del cultivo a una mayor latitud (lo que corroboraría en cierto modo la idea del calentamiento global) sino por el desarrollo de dicho cultivo en áreas reclamadas al desierto (Marruecos y otros países) gracias al riego en goteo y otras técnicas de cultivo.

TERREMOTOS
Un terremoto, también llamado seísmo o sismo (del griego "σεισμός", temblor) o temblor de tierra:Es una sacudida del terreno que se produce debido al choque de las placas tectonicas y a la liberación de energía en el curso de una reorganización brusca de materiales de la corteza terrestre al superar el estado de equilibrio mecánico. Los más importantes y frecuentes se producen cuando se libera energía potencial elástica acumulada en la deformación gradual de las rocas contiguas al plano de una falla activa, pero también pueden ocurrir por otras causas, por ejemplo en torno a procesos volcánicos o por hundimiento de cavidades cáraracteristicas.
ORIGEN
El origen de los terremotos se encuentra en la acumulación de energía que se produce cuando los materiales del interior de la Tierra se desplazan, buscando el equilibrio, desde situaciones inestables que son consecuencia de las actividades volcanicas y tectónicas, que se producen principalmente en los bordes de la placa.
Aunque las actividades tectónicas y volcánicas son las principales causas por las que se generan los terremotos, existen otros muchos factores que pueden originarlos:
  • Acumulación de sedimentación como: Desprendimientos de rocas en las laderas de las montañas, hundimiento de cavernas.
  • Modificación del régimen de precipitación, modificando cuencas o cauces de ríos o estuarios)
  • Variaciones bruscas en la presion atmosferica por ciclones
Estos mecanismos generan eventos de baja magnitud que generalmente caen en el rango de microsismos, temblores que sólo pueden ser detectados por sismografos.

LOCALIZACIONES
Los terremotos tectónicos se suelen producir en zonas donde la concentración de fuerzas generadas por los límites de las placas tectonicas dan lugar a movimientos de reajuste en el interior y en la superficie de la tierra. Es por esto que los sismos o seísmos de origen tectónico están íntimamente asociados con la formación de fallas geologicas. Suelen producirse al final de un ciclo denominado ciclo sísmico, que es el período durante el cual se acumula deformación en el interior de la tierra que más tarde se liberará repentinamente. Dicha liberación se corresponde con el terremoto, tras el cual la deformación comienza a acumularse nuevamente.
El punto interior de la tierra donde se produce el sismo se denomina foco sísmico o hipocentro, y el punto de la superficie que se halla directamente en la vertical del hipocentro —y que, por tanto, es el primer afectado por la sacudida— recibe el nombre de epicentro.
En un terremoto se distinguen:
  • Hipocentro, zona interior profunda, donde se produce el terremoto.
  • Epicentro, área de la superficie perpendicular al hipocentro, donde repercuten con mayor intensidad las ondas sismicas.
TERREMOTOS INDUCIDOS
Hoy en día se tiene la certeza de que si se inyectan en el subsuelo, ya sea como consecuencia de la eliminación de desechos en solucion o en suspension, o por la extracción de hidrocarburo, se provoca, con un brusco aumento de la presion intersacial, una intensificación de la actividad sísmica en las regiones ya sometidas a fuertes tensiones. Pronto se deberían controlar mejor estos sismos inducidos y, en consecuencia, preverlos, tal vez, pequeños sismos inducidos pudieran evitar el desencadenamiento de un terremoto de mayor magnitud.
PROPAGACION
El movimiento sísmico se propaga mediante ondas elásticas (similares al sonido), a partir del hipocentro. Las ondas sismiscas se presentan en tres tipos principales:
-Ondas longitudinales, primarias o P: tipo de ondas de cuerpo que se propagan a una velocidad de entre 8 y 13 km/s y en el mismo sentido que la vibración de las partículas. Circulan por el interior de la Tierra, atravesando tanto líquidos como sólidos. Son las primeras que registran los aparatos de medida o sismógrafos, de ahí su nombre "P".
-Ondas transversales, secundarias o S: son ondas de cuerpo más lentas que las anteriores (entre 4 y 8 km/s) y se propagan perpendicularmente en el sentido de vibración de las partículas. Atraviesan únicamente los sólidos y se registran en segundo lugar en los aparatos de medida.
-Ondas superficiales: son las más lentas de todas (3,5 km/s) y son producto de la interacción entre las ondas P y S a lo largo de la superficie de la Tierra. Son las que producen más daños. Se propagan a partir del epicentro y son similares a las ondas que se forman sobre la superficie del mar. Este tipo de ondas son las que se registran en último lugar en los sismógrafos.
TSUNAMI
Tsunami:Es una palabra que se refiere a maremoto. Se comenzó a utilizar por los medios de comunicación masiva cuando los corresponsales de habla inglesa emitían sus reportajes acerca del maremoto que precisamente ocurrió en el Asia (el 25 de diciembre de 2004 en el océano Índico). La razón es que en inglés no existe una palabra para referirse a este fenómeno por lo cual los angloparlantes adoptaron Tsunami como parte de su lenguaje, pero, como se verá en las citas históricas sobre maremotos que aparecen más adelante, la denominación correcta en español no es tsunami.
Antes, el término tsunami también sirvió para referirse a las olas producidas por huracanes y temporales que, como los maremotos, podían entrar tierra adentro, pero éstas no dejaban de ser olas superficiales producidas por el viento, aunque se trata aquí de un viento excepcionalmente potente.
Tampoco se deben confundir con la ola producida por la marea conocida como macareo. Éste es un fenómeno regular y mucho más lento, aunque en algunos lugares estrechos y de fuerte desnivel pueden generarse fuertes corrientes.
La mayoría de los maremotos son originados por terremotos de gran magnitud bajo la superficie acuática. Para que se origine un maremoto el fondo marino debe ser movido abruptamente en sentido vertical, de modo que una gran masa de agua del oceano es impulsada fuera de su equilibrio normal. Cuando esta masa de agua trata de recuperar su equilibrio genera olas. El tamaño del tsunami estará determinado por la magnitud de la deformación vertical del fondo marino entre otros parámetros como la profundidad del lecho marino. No todos los terremotos bajo la superficie acuática generan maremotos, sino sólo aquellos de magnitud considerable con hipocentro en el punto de profundidad adecuado.
TIPOS DE MAREMOTOS
Existen otros mecanismos generadores de maremotos menos corrientes que también pueden producirse por erupciones volcanicas, deslizamientos de tierra, meteoritos o explosiones submarinas. Estos fenómenos pueden producir olas enormes, mucho más altas que las de los maremotos corrientes. Se trata de los llamados megamaremotos, término que, si bien no es científico, puede usarse de forma poco rigurosa para referirse a los maremotos generados por causas no tectónicas. De todas estas causas alternativas, la más común es la de los deslizamientos de tierra producidos por erupciones volcánicas explosivas, que pueden hundir islas o montañas enteras en el mar en cuestión de segundos. También existe la posibilidad de desprendimientos naturales tanto en la superficie como debajo de ella. Este tipo de maremotos difieren drásticamente de los maremotos tectónicos.
En primer lugar, la cantidad de energía que interviene. Está el terremoto del oceano indico de 2004, con una energía desarrollada de unos 32.000 MT. Solo una pequeña fracción de ésta se traspasará al maremoto. Por el contrario, un ejemplo clásico de megamaremoto sería la explosión del volcán Krakatoa, cuya erupción generó una energía de 300 MT. Sin embargo, se midió una altitud en las olas de hasta 50 m, muy superior a la de las medidas por los maremotos del océano Índico. La razón de estas diferencias estriba en varios factores. Por una parte, el mayor rendimiento en la generación de las olas por parte de este tipo de fenómenos, menos energéticos pero que transmiten gran parte de su energía al mar. En un seismo (o sismo), la mayor parte de la energía se invierte en mover las placas. Pero, aun así, la energía de los maremotos tectónicos sigue siendo mucho mayor que la de los megamaremotos. Otra de las causas es el hecho de que un maremoto tectónico distribuye su energía a lo largo de una superficie de agua mucho mayor, mientras que los megamaremotos parten de un suceso muy puntual y localizado. En muchos casos, los megamaremotos también sufren una mayor dispersión geométrica, debido justamente a la extrema localización del fenómeno. Además, suelen producirse en aguas relativamente poco profundas de la plataforma continental. El resultado es una ola con mucha energía en amplitud superficial, pero de poca profundidad y menor velocidad. Este tipo de fenómenos son increíblemente destructivos en las costas cercanas al desastre, pero se diluyen con rapidez. Esa disipación de la energía no sólo se da por una mayor dispersión geométrica, sino también porque no suelen ser olas profundas, lo cual conlleva turbulencias entre la parte que oscila y la que no. Eso comporta que su energía disminuya bastante durante el trayecto.
El ejemplo típico, y más cinematográfico, de megamaremoto es el causado por la caída de un meteorito en el océano. De ocurrir tal cosa, se producirían ondas curvas de gran amplitud inicial, bastante superficiales, que sí tendrían dispersión geométrica y disipación por turbulencia, por lo que, a grandes distancias, quizá los efectos no serían tan dañinos. Una vez más los efectos estarían localizados, sobre todo, en las zonas cercanas al impacto. El efecto es exactamente el mismo que el de lanzar una piedra a un estanque. Evidentemente, si el meteorito fuera lo suficientemente grande, daría igual cuán alejado se encontrara el continente del impacto, pues las olas lo arrasarían de todas formas con una energía inimaginable. Maremotos apocalípticos de esa magnitud debieron producirse hace 65 millones de años cuando un meteorito cayó en la actual peninsula de yucatan. Este mecanismo generador es, sin duda, el más raro de todos; de hecho, no se tienen registros históricos de ninguna ola causada por un impacto.
Algunos geólogos especulan que un megamaremoto podría producirse en un futuro próximo (en términos geológicos) cuando se produzca un deslizamiento en el volcán de la parte inferior de la isla de La Palma, en las islas canarias (cumbre vieja). Sin embargo, aunque existe esa posibilidad (de hecho algunos valles de Canarias, como el de guimar (tenerife) o el del Golfo (El Hierro) se formaron por episodios geológicos de este tipo), no parece que eso pueda ocurrir a corto plazo, sino dentro de cientos o miles de años. Esta especulación ha causado una cierta polémica, siendo tema de discusión entre distintos geólogos. Un maremoto es un peligro para el lugar en que se encuentre o se origine, pero también este fenómeno tiene ventajas hacia nuestro planeta.
OCEANO INDICO(2004)
Hasta la fecha, el maremoto más devastador ocurrió el 26 de diciembre de 2004 en el oceano indico, con un número de víctimas directamente atribuidas al maremoto (tsunami) de aproximadamente 230.000 personas. Las zonas más afectadas fueron Indonesia y Tailandia, aunque los efectos destructores alcanzaron zonas situadas a miles de kilómetros: malasia,banglandes,india, sri lankas, las maldivas e incluso somalia, en el este de africa. Esto dio lugar a la mayor catástrofe natural ocurrida desde el krakatoa, en parte debido a la falta de sistemas de alerta temprana en la zona, quizás como consecuencia de la poca frecuencia de este tipo de sucesos en esta región. El terremoto fue de 9,1 grados: el tercero más poderoso tras el terremoto de Alaska (9,2) y de Valdivia (Chile) de 1960 (9,5). En banda aceh formó una pared de agua de 20 o 30 m de altura penetrando en la isla 5 o 6 km desde la costa al interior; solo en la isla de sumatra murieron 228.440 personas o más. Sucesivas olas llegaron a Tailandia, con olas de 15 metros que mataron a 5.388 personas; en la India murieron 10.744 personas y en Sri Lanka, hubo 30.959 víctimas. Este tremendo tsunami fue debido además de a su gran magnitud (9,3),a que el epicentro estuvo solo a 9 km de profundidad, y la rotura de la placa tectónica fue a 1.600 km de longitud (600 km más que en el terremoto de Chile de 1960).
HOKAIDO(1993)
Un maremoto (tsunami) imprevisto ocurrió a lo largo de la costa de hokaido en japon, como consecuencia de un terremoto, el 12 de julio de 1993. Como resultado, 202 personas de la pequeña isla de Okushiri perdieron la vida, y centenares resultaron heridas. Este maremoto provocó que algunas oficinas cayeran en quiebra, las olas adquirieron una altura de 31 metros, pero sólo atacó a esta isla.

NICARAGUA(1992)
Un terremoto ocurrido en las costas del pacífico de nicaragua, de entre 7,2 y 7,8 grados en la escala de ritchert, el 1 de semtiembre de 1992, provocó un maremoto que azotó gran parte de la costa del pacífico de este país, provocando más de 170 muertos y afectando a más de 40.000 personas, en al menos una veintena de comunidades, entre ellas san juan del sur.
VOLCANES
Un volcan:Es un conducto que pone en comunicación directa la parte superior de la corteza sólida con los niveles inferiores de la misma. Es también una estructura geológica por la cual emergen el magma (roca fundida) en forma de lava y gases del interior del planeta. El ascenso ocurre generalmente en episodios de actividad violenta denominados «erupciones», las cuales pueden variar en intensidad, duración y frecuencia; siendo desde conductos de corrientes de lava hasta explosiones extremadamente destructivas.
Generalmente adquieren una característica forma cónica que es formada por la presión del magma subterráneo así como de la acumulación de material de erupciones anteriores. Encima del volcán podemos encontrar su crater o caldera.

Los volcanes se pueden encontrar en la Tierra así como en otros planetas y satélites, algunos de los cuales están formados de materiales que consideramos "fríos"; estos son los criovolcanes. Es decir, en ellos el hielo actúa como roca mientras la fría agua líquida interna actúa como el magma; esto ocurre -por ejemplo- en la fría luna de jupiter llamada europa.
Por lo general, los volcanes se forman en los límites de placas tectonicas, aunque hay excepciones llamadas puntos calientes o hot spots ubicados en el interior de placas tectónicas, como es el caso de las islas hawai. También existen volcanes submarinos que pueden expulsar el material suficiente para formar islas volcánicas.
Los geologos han clasificado los volcanes en tres categorías: volcanes en escudo, conos de cenizas y conos compuestos.
VOLCANES ACTIVOS
Los volcanes activos son aquellos que entran en actividad eruptiva. La mayoría de los volcanes ocasionalmente entran en actividad y permanecen en reposo la mayor parte del tiempo. Para bienestar de la humanidad solamente unos pocos están en erupción continua. El período de actividad eruptiva puede durar desde una hora hasta varios años. Este ha sido el caso del volcan de payaca, o el irazu. Los intervalos de calma entre erupciones pueden durar meses, décadas y en ocasiones hasta siglos. Sin embargo, no se ha descubierto aún un método seguro para predecir las erupciones.
VOLCANES EXTINTOS
Los volcanes extintos son aquellos que estuvieron en actividad durante períodos muy lejanos y no muestran indicios de que puedan reactivarse en el futuro. Son muy frecuentes, aunque la inactividad que las describe puede reactivarse nuevamente en muy raras ocasiones, estos volcanes generalmente han dejado de mostrar actividad desde hace muchos siglos antes de ser considerados extintos.
La actividad eruptiva es casi siempre intermitente, ya que los períodos de paroxismo alternan con otros de descanso, durante los cuales el volcán parece extinguido (vesubio, teide, teneguia, fuji, etc.). Consiste en el desplazamiento de las rocas ígneas o en estado de fusión, desde el interior de la corteza terrestre hacia el exterior. Estos materiales salen a la superficie terrestre como si fueran ríos de rocas fundidas, conformando un volcán activo, al impulso de los gases.
VOLCANES DURMIENTES
Los volcanes durmientes son aquellos que mantienen ciertos signos de actividad como lo son las aguas termales y han entrado en actividad esporádicamente. Dentro de esta categoría suelen incluirse las fumarolas y los volcanes con largos períodos en inactividad entre erupción. Un volcán se considera activo si su última erupción fue antes de 25.000 años.
 
TIPOS DE ERUPCIONES VOLCANICAS
La temperatura, composición, viscosidad y elementos disueltos de los magmas son los factores fundamentales de los cuales depende el tipo de explosividad y la cantidad de productos volátiles que acompañan a la erupción volcánica.
HAWAIANO O EFUSIVO
Sus lavas son bastante fluidas, sin que tengan lugar desprendimientos gaseosos explosivos; estas lavas se desbordan cuando rebasan el cráter y se deslizan con facilidad por la ladera del volcán, formando verdaderas corrientes que recorren grandes distancias. Por esta razón, los volcanes de tipo hawaiano son de pendiente suave. Algunas partículas de lava, al ser arrastradas por el viento, forman hilos cristalinos que los nativos llaman cabellos de la diosa pele (diosa del fuego). Son bastante comunes en todo el planeta.

No hay comentarios:

Publicar un comentario en la entrada